
Theor Chim Acta (1987) 72:237-251

�9 Springer-Verlag 1987

Storage management strategies in large-scale quantum
dynamics calculations*

David W. Sehwenke l**, Kenneth Haug 1, Donald G. Truhlar 1,
Roland H. Schweitzer 2, John Z. H. Zhang 3.**, Yan Sun 3 and
Donald J. Kouri 3

1 Department of Chemistry and Supercomputer Institute, University of Minnesota,
Minneapolis, MN 55455, USA
2 ETA Systems, Inc., 1450 Energy Park Drive, St. Paul, MN 55108, USA and Minnesota
Supercomputer Center, 1200 Washington Avenue South, Minneapolis, MN 55415, USA
3 Departments of Chemistry and Physics, University of Houston, Houston, TX 77004, USA

(Received June 15; revised and accepted July 15, 1987)

We discuss the computational strategies related to memory and disk storage
and to data movement between memory and disk in large-scale quantum
dynamics calculations. The discussion includes practical implementations of
various strategies for handling large data sets on various supercomputer
architectures.

Key words: Quantum mechanical dynamics calculations - - Supercomputers
- - Storage management - - Computer memory

1. Introduction

We have recently initiated two research programs involving large-scale dynamics
calculations based on time-independent quantum mechanics. The first program
[1-8] is directed to inelastic collisions and has been carried out by converting
the Schroedinger equation to coupled linear ordinary differential equations which
are solved by an invariant-imbedding-type propagation method. (Propagation
techniques similar to those employed in this study could also be applied to

* This paper was presented at the International Conference on 'The Impact of Supercomputers on
Chemistry', held at the University of London, London, UK, 13-16 April 1987

** Present address: NASA Ames Research Center, Moffett Field, CA 94035, USA
*** Present address: Department of Chemistry, University of California, Berkeley, CA 94720, USA

238 D.W. Schwenke et al.

reactive scattering [9], but we have not yet done so.) The second research program
[10-13] is directed primarily to reactive collisions (although the techniques have
also been applied to inelastic scattering [11] and should be quite competitive or
even optimal for some inelastic scattering calculations). The second program
involves converting the Schroedinger equation to coupled integral equations
which are solved by basis-set expansion and linear algebraic techniques. The
quantum mechanical theory for inelastic collisions [1, 3, 11] and reactive scatter-
ing [9, 11, 13] and the results of applications [2-8, 10-13] are discussed in detail
elsewhere. In this contribution to the proceedings of the International Conference
on the Impact of Supercomputers on Chemistry, we center our attention on one
specific aspect of the calculations, namely the questions of memory and disk
usage, or - more broadly stated - the problem of storage management. Results
presented at the Conference are described elsewhere [1-8, 10-13].

Section 2 provides a brief review of our algorithms. Section 3 presents the storage
management strategies we have used, and Sect. 4 summarizes our conclusions.

2. Algorithms

2.1. Propagation method

The Hamiltonian for vibrationally, rotationally inelastic collisions of two
molecules may conveniently be written as

h2 1 0 (R 2 0 - ~) + H ~ , (1)
H = 2tx R 2 OR

where/x and R are the reduced mass and radial coordinate for relative transla-
tional motion, H ~ consists of centrifugal terms and the internal Hamiltonians of
the two colliders, and ~V is their interaction potential. We restrict the system to
a single Born-Oppenheimer potential surface, and we expand the solution of the
Schroedinger equation as

no 1 N
0 =-R 2 fn~(R, E)X , (x) (2)

/1=1

where n o denotes the initial state, f,-o is an unknown radial translational wave
function, E is the total energy, {X,} is an orthogonal basis set, and x denotes
the collection of angular translational coordinates and internal coordinates of
the colliders. The different terms in Eq. (2) are called channels. Substituting Eq.
(2) into the Schroedinger equation

H0% = E0% , (3)

-2[xR X ~ / h , and integrating over x yields multiplying by 2 , 2

d 2

dRaf(R, E) = D(R, E)f(R, E), (4)

where the elements of D(R, E) involve integrals over H ~ ~, and the basis
functions. The development just given corresponds to the conventional close

Large-scale quantum dynamics calculations 239

coupling equations, but equations of the same form, with smaller order N for a
given total angular momentum and set of vibrational-rotational states, are
obtained in various more approximate formulations involving effective potentials
[14, 15] or angular momentum decoupling [16-18].

There are N linearly independent vector solutions of (3) that are regula r at the
origin, as required for the physical solutions. We obtain a full set of such regular
solutions by simultaneously propagating information equivalent to N solutions
from small R to large R, where we match to the n0-dependent boundary conditions
to obtain the physical solutions.

The propagation algorithm we use is the R matrix propagation method [19-21],
which is an invariant-imbedding-type [22-25] algorithm. It involves dividing the
R coordinate into a large number of sectors (typically 300-600) and recursively
assembling the global R 4 matrix. The steps performed for sector i are to construct
the D matrix at the sector midpoint, determine the eigenvectors T(i) and eigen-
values/t2(i) of D (which is real and symmetric and of order N, the number of
channels), build the sector overlap matrix r (i - 1, i) by

, t (i - 1, i) = T T (i - 1) T(i) (5)

and form its inverse, and propagate the global R4 matrix by

R4(i) --- r4(i) - r3(i)[R4(i - 1) + rl(i)]-~r2(i), (6)

where the r~(i) matrices are functions of -r(i- 1, i) and diagonal sector propa-
gators that depend on k(i) . The final quantities of physical interest can be easily
constructed from R4 for the final sector.

For the energy-independent potential used in the present study, the total energy
occurs in (4) only as a multiple of the unit matrix in D, thus the eigenvectors T
and the sector overlap matrices "t(i- 1, i) are independent of energy and can be
re-used for calculations with the same potential and channel set but a different
energy. Therefore for second and subsequent energies, only the steps associated
with Eq. (6) have to be performed.

As we have coded the R matrix propagation algorithm, it involves 3 matrix
multiplications, 2 linear equation solutions, and 1 matrix diagonalization per
sector for the first energy, and 2 matrix multiplications and 1 linear equation
solution per sector for subsequent energies. All of these operations are on full
matrices of order N. Our strategies for solving Eq. (4) have been developed for
N on the order of 103. For many problems of interest, even higher values of N
will be required for convergence.

Further details may be found elsewhere [1, 3, 19, 20].

2.2. Algebraic method

The second approach to molecular collision dynamics that will be discussed in
the present paper is to convert the Schroedinger equation to coupled Lippmann-
Schwinger integral equations for the amplitude density and to solve these by

240 D.W. Schwenke et al.

expanding the amplitude density in a square integrable (5~ 2) basis set [11]. This
method is applicable to both reactive scattering, for which several arrangements
of the particles are considered, and nonreactive inelastic collisions. As in Sect.
2.1, we restrict the system to a single Born-Oppenheimer potential surface. We
will give the equations for reactive scattering and consider the single-arrangement
inelastic problem as a special case. When the amplitude denisty is expanded in
a basis and the coefficients of the basis functions are obtained by the method of
moments [11, 26], the resulting algebraic Lippmann-Schwinger equation can be
written in matrix form as

a = b + Ca , (7)

where the b vector and C matrix have elements given by multidimensional
integrals over readily obtained functions, and the elements of the a vector are
the basis set expansion coefficients to be solved for. In particular, for reactive
scattering, we write the reactive amplitude density for each arrangement a of the
particles (e.g. a = 1 for A + B C , 2 for B + A C , and 3 for C + A B) as

t~ M
~'~o%: ~ • a:o~cb~nm(R~,x~), (8)

n ~ a m ~ l

where

1 aP~n,~ - A~,"(R~)X:(x~), (9)
Re

a0 and no denote initial arrangement and channel, ff~=(1, t ~ + l , . . .) , rT~=
(N1, N~ + N2, �9 �9 �9), R~ and x~ are radial translational and angular-translational-

(X~} n~ is an arrangement-dependent internal coordinates for arrangement a ~
generalization of the basis of Eq. (2), and {A ~"~M~ Jm=l is a nonorthogonal basis of
~2 radial translational basis functions. Then we define/3 as a collection of the
three indices

/3 = (~, n, m). (10)

We will consider the case in which all three arrangements a have the same
number of basis functions so that N~ and M~ are independent of a, and we
define the product

N= 3N~M~, (11)

which is the order of a vector with index/3 or a matrix with indices /3 and/3 ' .
With these definitions

an f c,n (r) b.,= dR,~eo,(R~) f.(E,R,~) (12)

and

Ct3,e =(1-Sd~)Z~,~-~ f dR~e~9(R~)

f dR'(r)f~(E, < (o ~ > ~- , R~) f,,(E, R~)A~ (R~), (13) x
.)

L a r g e - s c a l e q u a n t u m d y n a m i c s c a l c u l a t i o n s 241

where

R~ < = min (R~, R'~) (14)

R~ > = max (R, , R'~). (15)

In these equations the functions (r)f~ and (of~ are energy-dependent solutions
to zero-order problems as obtained in earlier steps, and e~ n and Z~,r are an
energy-independent coupling vector (i.e. a vector of integrals over the coupling
potential) and an energy-independent overlap matrix, respectively, also obtained
in earlier steps. The integrals in Eqs. (12) and (13) are evaluated by numerical
quadrature, and the total order of this quadrature in arrangement a will be called
N~ ~ and will be assumed for discussion purposes to be independent of a. We
will assume in the discussion that follows that h ~n is independent of n.

An alternative form of the b vector and C matrix may be obtained by inserting
the identity in Eqs. (12) and (13) in terms of the translational basis set {h ~n~M m JinX--l,

i.e.

M~ M~
1= 2 • laT>Am <a; 'l, (16)

m = l m ' = l

where A ~ , is the inverse of the translational overlap matrix, i.e.

a ~ = ((9~n) -1 (17)

and

e~.~,m = f dR~ A~,~,(R~)Ag(R~). (18)

This is exact for a complete basis, but we use finite M~ which yields the
approximations:

b~9= 2 E~,r dR~A~,~,,(R~)(r)f~(E,R~) (19)
rn"= 1

and

2/x M f C~,t~=(1-6. ,~)Zc,~-h-Z ~ El3,13,, dR~A~,,~,(R~)
m"= 1

f 'JR'(~r~(F R2)(of~(E, > ~ , • ~, R~)Am (R~), (20)

where we have defined Eta, ~ as a coupling matrix with elements

E~,~= dR~e~f,(R~) E A~,'~'mA~,'~'(R~) �9 (21)
m r'= 1

Note that for computational purposes it may be useful to rewrite (21) as

M
El3, ~ = Y~ A,"~,,.C~,~,,, (22)

m"

242 D.W. Schwenke et al.

where we have first defined the integral

Ct~, ~ = dR~ e~",(R~),~7,"(R~). (23)

Further details may be found elsewhere [11]. The method just discussed is the
method of moments for the amplitude density, but essentially all the discussion
will apply equally well to two closely related methods - the Schwinger variational
method and Newton's variational principle for the amplitude density [26, 27]
with or without angular momentum decoupling approximations.

3. Storage management strategies

One condition which must be satisfied before a calculation can be carried out is
that sufficient memory be available for the algorithm used. In the past, this was
not usually a problem for scattering calculations. This was because, even though
the available physical memory was small, the CPU power was not usually great
enough to tackle problems exhausting this memory. The availability of class VI
supercomputers, however, brought a new facet to the problem. These machines
(the Cray-1 and X-MP machines and the Cyber 205) have the CPU power to
treat much larger problems than before. At the same time, the amount of memory
is not increased by an equivalent factor. For example, in 1980 the Chemistry
Department at the University of Minnesota obtained a Digital Equipment Cor-
poration VAX 11/780 equipped with scalar floating point accelerator and 4
metabytes (equivalent to half a megaword of 64-bit word memory) of physical
memory. In comparison, the University Computer Center had a Cray Research
Inc. Cray-lb with 1 megaword of physical memory (a word is 64 bits on the
Cray-lb). Our estimates of CPU times for H F + HF scattering calculations show
the Cray-lb to be up to about a factor of 400 times faster than the VAX, yet it
has only twice the physical memory. Although 8-million word Cyber 205's
appeared in 1985, and the introduction of the class-VII Cray-2 machine, with
268 million 64-bit words, in 1986, ushered in a new era of large-memory machines,
most supercomputing is still done with small memory machines, e.g. the Cray
X-MP/48 has only two million words (equivalent to 16 megabytes) per processor.
(An IBM Personal System/2 workstation may also be equipped with 16 megabytes
per processor, and a Macintosh II may be equipped with 8.)

When physical memory is insufficient for the problem at hand, we must use mass
storage, usually magnetic disk or tape. These media often, but not always, have
enough storage to handle the problems for which one can afford the CPU time;
however, they have the drawback of being much slower than physical memory.
The Solid-state Storage Device (SSD) "secondary memory", available only on
the Cray X-MP, is very large and much faster than conventional disk, but it is
still slower than primary memory and has a large startup time before the fast
aggregate transfer rate can be achieved. Thus it is possible for calculations using
mass storage to spend more time waiting for data transfer to and from mass
storage than time executing in the CPU. In quantal scattering calculations, most

Large-scale quantum dynamics calculations 243

of the CPU time is consumed in performing matrix operations which, for large
enough N, where N is the order of the matrix, scale as N 3. I f the matrices
involved are on mass storage, the time to retrieve them will scale with the order,
as N 2, and for small or intermediate N, this time can dominate compared to the
matrix operations. However, as N increases, eventually the N 3 term will dominate,
and more time will be spent in the CPU than waiting for data transfer. This, of
course, assumes that the data required for the matrix operation will fit into
available physical memory. Otherwise an "out-of-core" algorithm must be
employed, and this would bring a new dimension into the problem. Fur thermore
although some operations, such as matrix multiply and linear equations solution,
can be partit ioned efficiently so that only a partition of the matrix needs to be
in memory at one time; others, such as eigenanalysis, are not as readily partitioned.
Thus for larger problems, even if memory overflow is accommodated on mass
storage, it is still important to have an efficient strategy for storing matrix elements
in memory.

For our calculations on small-memory (-<8 million 64-bit words) computers, we
implemented the memory overflow to mass storage in two ways. On the Cray-lb,
we explicitly move data via FORTRAN R E A D / W R I T E statements (the Cray
routines B U F F E R I N and BUFFEROUT can also be used, and in fact are probably
preferable, but they lack portability). Because of the 1-megaword memory limita-
tion, our code for this machine was written to hold only two matrices in memory
at any one time. This is sufficient for the matrix operations involved in the
R-matrix propagation algorithm. In particular the eigenanalysis, which is carried
out using the EISPACK routine RS for real symmetric matrices, and the real
linear equation solution both require only 1 matrix in memory, and matrix multiply
requires 2 matrices. The matrix multiply is performed as a sequence of matrix-
times-vector-gives-vector steps, with the result matrix overwriting the second
matrix. On the 1 megaword Cray-lb, this code could handle up to about N = 640
(640 coupled channels).

Our computational strategy on the Cyber 205 took advantage of the virtual
memory aspect of the operating system. Here, as far as coding is concerned, ~he
memory of the machine appears to be much larger than the physical memory
available. At run time, the operating system automatically transfers data to and
from memory as it is needed. There are several trade-otis between using explicit
FORTRAN data transfer and using the virtual memory. On the one hand, the
virtual memory is convenient, it automatically performs less data transfer if more
memory is available or if a smaller problem is treated, and it uses efficient
operating system input /output procedures. On the other hand, if explicit and
intelligent data transfer statements can be used to minimize the total amount of
data movement or organize it efficiently, they may decrease the amount of paging,
make the code more transportable, and allow for sophisticated options like
memory-resident files (codes with explicit data transfer are also readily adapted
to utilize the SSD).

An important consideration in running the R matrix propagation code is that
the amount of memory required in the course of a calculation can fluctuate

244 D.W. Schwenke et al.

greatly. Consider the various steps outlined in Sect. 2.1. The first is the construction
of the D matrix, and the most time consuming part of this is computing matrix
elements V~j of the interaction potential. In general we can write

M

V,, , (R)= E Bt~,t~,,,cvm,~,,,(R), (24)
m = l

where the B ~ , are independent of R, the C~%, depend on R, and fi and y denote
subsets of the channel quantum numbers. For example in H F + H F collisions,
Bt~ ~, is a 6-dimensional angular integral which depends on rotational quantum
numbers and the angular momentum coupling and is expressible in terms of 3 - j ,
6 - j , and 9 - j symbols, and Cv~, is a 2-dimensional vibrational integral of
component m of the interaction potential function. We have performed calcula-
tions which require M up to 825. Even though the B m matrix is sparse (about
5% nonzero for this case) and we store only the nonzero elements, a considerable
amount of memory or disk is required to save these elements, in particular about
40N 2 words. The remaining steps (diagonalization of D, building the s e c t o r
overlaps, and propagation) in the R-matrix propagation algorithm for a single
energy run have much more modest memory requirements, and in particular our
code requires 7N z words (we neglect all requirements proportional to only N in
the present discussion). If the operating system assigns priorities to jobs by their
memory requirements, as it does in our batch environment, it can be advantageous
(e.g. to minimize wall clock time) to advise the system of the maximum memory
requirements of the various steps of the calculation.

In our calculations we found that the virtual memory of the Cyber 205 is indeed
useful for extending the size of the system which can be treated. Virtual memory
on the Cyber 205 is divided into units called pages. There are two different page
sizes, small pages which are 16 blocks of 512 64-bit words per block, and large
pages which are 128 blocks. The size of the small page is selected by the site and
may be 1, 4, or 16 blocks. We grouped our data on large pages and the Cyber
205 virtual memory manager, the pager, automatically moved pages in and out
of memory as needed. However, if we did not advise the system of the changing
memory requirements of different steps of our job, we found that the turn-around
time for a large job (a job requiring -115 large pages) was much longer than
the CPU time required. This occurred because a large job is run at a low priority
so our jobs were forced to wait for large amounts of memory during busy
production periods.

Jobs are scheduled for the CPU by priority, provided that the job with the highest
priority still waiting to be scheduled will fit into the available memory. For a
typical one of our jobs (N = 824), the memory requirements would fluctuate,
starting at about a small fraction of the machine memory (- 2 3 large pages),
climbing rapidly (to - 115 large pages) for some sections, and then backing down
(to - 2 3 large pages) again. The result of this behavior is that the working set,
which is used to estimate the job's memory requirement for CPU scheduling,
grows at about the same rate as the actual memory requirement. However, the
system uses a scaling factor when reducing the working set size, so that once the

Large-scale quantum dynamics calculations 245

working set is large it takes several evaluation periods to reduce it, even though
the actual memory requirement is much less than the current working set.

Our strategy for reducing the turn-around time on a busy system was twofold.
First, we were able to use subroutine calls to a system program Q5ADVISE that
allow the programmer to tell the operating system when a page should be moved
from memory to disk. We used this instruction to advise the system that certain
arrays would not be needed for the up coming step in the calculation. Secondly,
the scaling factor used by the system routine PAGER to reduce the job 's working
set was altered so pages that were advised out would result in a reduced working
set in fewer evaluation periods. With a smaller working set, a low-priority job
has a greater chance of being scheduled for the CPU. This strategy reduced the
time needed to turn the job around by a factor of about three (without, however,
significantly aliecting the CPU time needed to complete the calculation). It should
be noted that if the job was alone in the system these changes would not be
needed since they only affect the job's ability to compete in a priority environment
for memory. Decisions about working set evaluations and virtual memory manage-
ment are complex. The change that was made to the system pager, though minor,
is necessary to realize any benefits from this strategy, and it will affect all of the
jobs running in the system.

To see more concretely how the memory resource demand changes and how the
operating system can benefit from user intervention, we must consider in more
detail the operation mode of the Cyber 205 computer. The system paging algorithm
is based on a first-in, last-out criterion, so after the evaluation of the V matrix
for a given sector via Eq. (24), physical memory will contain the V matrix and
the last used parts of the B m matrix. The B m matrix elements will not be required
again until the other steps, Eqs. (5)-(6), are complete, however the system pager
will keep them in memory until they are evicted by other memory demands. The
next step, the formation of D and its diagonalization, requires an additional N 2
words of memory beyond that for V. Also note that the diagonalization of D is
an expensive step (- 1 0 N 3 floating point operations), so it is very inefficient to
let the operating system occupy a significant amount of physical memory which
is not being used during this step. It is better to page out the B m matrix elements
immediately after they have been used, and this is what we did with the
Q5ADVISE subroutine calls. Another place where memory management is helpful
is the storage of the eigenvectors T(i) of the D matrix. After they are calculated
in sector i, they are needed immediately in Eq. (5), but not again until Eq. (5)
is evaluated for sector i + 1. Thus it is advantageous to page T(i) out immediately
after Eq. (5) is calculated. For large-scale calculations on a busy system, these
considerations can be critical for good turnaround.

Another possibility for decreasing the memory requirements is to rearrange the
order of computational steps. An example of this possibility is provided by the
approach we implemented for multiple-energy runs in the R matrix propagation
algorithm. As mentioned at the end of Sect. 2.1, the matrices , r (i - 1, i) and their
inverses can be re-used for second and subsequent energies. In an early version
of our code, we performed a complete calculation at one energy and saved these

246 D.W. Schwenke et al.

matrices and their inverses on disk files for each of the 300 to 600 sectors. This
storage becomes prohibitive for large-scale calculations, so in our Cyber 205
production code we s a v e 11~ 4 for each energy instead of the sector overlap matrices.
Thus we determine the R4 matrix for all energies at sector i before we calculate
any quantities for sector i+ 1. Since the number of energies we calculate is
typically 3 to 7, it is much less than twice the number of sectors; thus this approach
greatly reduces the storage requirements. Our code requires (6+ N E) N 2 words
of storage for the diagonalization, sector overlap, and propagation steps for a
multi-energy calculation consisting of NE energies.

Alternatively, one can simply recalculate some of the quantities when they are
needed a second time rather than saving them. For example, in the R matrix
propagation algorithm, for large enough N, the operation count per sector is
64N3/3 for first energies and only 20N3/3 for second or subsequent energies;
thus there is a considerable cost for not re-using the sector transformation matrices.
For example, one can perform 3.2 second energy runs for the same cost as the
first energy run. In the ~2 method employing Eqs. (12) and (13), the only
quantities which can be re-used for subsequent energies are the overlap matrix
and coupling vector. Depending on the problem, it may be possible to code the
evaluation of the coupling vector in such an efficient manner that it is not
prohibitive to recalculate it whenever necessary. This should usually be true for
atom-plus-diatom collisions. Other quantities which might be considered as
candidates for recalculation are the coefficients Bt~ ~ , in Eq. (24). We have found
that in H F + HF collisions, the calculation of these coeff• can be very time
consuming, so that recalculation is not a viable alternative. The main reason for
this is that our current algorithm for calculating vector coupling coefficients is
not vectorizable. These comments point up clearly the fact that vectorization and
memory strategies are far from independent.

Many of the above considerations also apply to the new generation of large-real-
memory supercomputers such as the Cray-2, which is currently configured with
up to 268 megawords of memory. In the case of the Cray-2 and currently employed
t ime-independent quantal scattering algorithms, the memory is probably sufficient
for most scattering calculations which would be affordable in terms of CPU time
with current budgets. However, there are instances where saving data on disk
instead of memory could be useful. As usual, the primary motivation is economic.
Depending on the installation and the charging algorithm, memory usage may
cost more than mass storage and data transfers. Another aspect is rolling out of
jobs. By rolling out, we refer to the process by which the operating system copies
a calculation's physical memory to mass storage in order to use the memory for
something else. This may occur frequently in a priority-based batch system or
infrequently at ends of availability periods or both. Most installations do not
have enough mass storage, so a limit is placed on the memory size of jobs which
can be rolled out. By using mass storage where possible to decrease memory
usage, a nonrollable calculation could be made rollable. This could mean faster
turn-around time, because there is a limit on the number of nonrollable jobs
(they must all fit in memory simultaneously), as well as better restart ability in

Large-scale quan tum dynamics calculations 247

case of system failures or failure to complete by the end of a computer availability
period. Eventually it could be the determining factor on whether or not a
calculation is doable.

An important consideration for 5(2 methods, such as the method reviewed in
Sect. 2.2, is the size of the resulting vectors and matrices, and different approaches
can significantly alter their sizes and therefore determine which systems can be
studied. We will discuss this from the point of view of real memory computers
such as the Cray-2, where we must be concerned with time-integrated memory
usage and rolling strategy (rather than working sets and paging as on a virtual-
memory architecture). We will consider as examples how the storage requirements
change for using Eqs. (12) and (13) as compared to Eqs. (19) and (20), for
inelastic as compared to reactive scattering, and for the use of localized vs
delocalized translational basis functions. Since the coupling vector that appears
in Eqs. (12) and (13) is independent of energy, an efficient strategy is to store it
for re-use if the study involves several energies, as is usually the case. With this
in mind, we will count the storage requirements for several cases.

The storage requirements for the various arrays occurring in the ~ 2 method are
summarized in Table 1. The nonreactive column refers to the case where only
one arrangement is included, A + B C refers to reactive scattering with no two
atoms identical, and A + B2 refers to reactive scattering with B identical to C and
array elements identical by symmetry stored only once (as discussed below).

First consider the nonreactive scattering case using Eqs. (12) and (13). For
nonreactive scattering, the Z matrix is multiplied by zero and thus is not required,
so we need arrays 1-5, 7, and 9 in Table 1. (Although this is not shown in Sect.
2.2, the factor A~,",~ appearing in the definition of the E matrix is also used in
forming the e vector, and therefore it is required when using Eqs. (12) and (13).)
For nonreactive scattering the coupling vector has a particularly convenient form,

Table 1. Array sizes for the ~ a method

Array Size"

No. Name Nonreactive A + BC b A + B2 b

1 (r)f(E, R~) N~N~ e 3N~N~ e 3N~N~ R
2 (')f(E, R~) N~N QR 3N~N~ e 3N~N~ R
3 A~,,~, MEN~ 3M2N~ 3M2N,~
4 A~,~,(R~) M~N~NQ~ g 3M~N~N~ g 3M~N~N QR
5 b~;' M~N] 9M=N 2 9M~N 2
6 Z ~ 6MZN~ 3M~N~
7 Ct~tr M 2 N 2 9 M ~ N 2 9M~N~
8 C~, M~N~ 9M~N~ 9 M ~ N 2
9 e~,(R~) M~N2N QR 9M~N2N QR 5M2N2NQR

10 E~, M ~ N 2 9 M 2 N 2 5 M 2 N 2

a Assuming A72!(R~,) independent of n
b Also assuming N,~, M~, and N ~ R independent of a

248 D.W. Schwenke et al.

i . e . ,

a. A,~,.,,,Am,,(R,~)e,~n,(R,.), (25) e ~ , (R o) = 2 ~~ on,
m"

where

[dx~ ~ c o ~o~,(R~) = X ~ (x .) V ~ (R ~ , x .) X . (x ~) (26)
t /

and V c is the coupling potential. Substituting (26) into (12) yields

Atom,, f dR~ Am,,(R,~)P~,(R~), (27)
m"

where

P~', (R~) = e~,,(R~)f~(E, R~). (2S)

I f we use localized basis functions, e.g., distributed gaussians [28], the integrals
in (27) can be done using a localized quadrature centered at the peak of A ~,,',(R,),
such that N ~ R can be given a small value, say N ~ L, and each Y,,,(R,) needs to
be stored at only N ~ L values of R~. To make the example even more concrete,
consider the case where N~ ~ M, ~ N ~ L ~ x, where x might be about 30-50. Then
the storage requirement for arrays 1 and 2 is x 2 each, that for 3, 4, and 5 is x 3
each, and that for arrays 7 and 9 is x 4 each and clearly dominates. Neither x 4
array is symmetric.

Now consider the case where we use Eqs. (19) and (20). Then we must store
array 10 instead of 9. To take advantage of the localized translational functions
in forming array 10, which is the E matrix, the summation over the overlap
inverse and the integral that appears in Eq. (21) must be done in separate steps
given by Eqs. (22) and (23) because the factor ~,~,~ A~,,~,mA ~,,',(R~) of the integrand
of (21) is delocalized even if A~ n is localized. This separation requires the use
of a temporary matrix C to carry out the matrix multiply but since ~' has the
same dimensions as C, we can use C itself as the temporary matrix. For the case
just considered, both e~',(R~) and Er162 require X 4 storage locations. If, however,
we used a variational method [26, 27] for which M~ ~0.3x, then Eqs. (12) and
(13) require ~0.4x 4 storage locations, whereas Eqs. (19) and (20) would require
only ~0 .2x 4. Notice however that the relative storage requirements for the two
approaches do not depend on the number of channels since all the big arrays
scale as N 2.

We now consider how these requirements would change if we used delocalized
translational basis functions. In this case N~ R would have to be much larger,
for examle 400-1000; we will use the symbol N~ D to denote a typical value of
N~ OR for a delocalized basis. Let N~ OD ~ 10x for discussion purposes. Then the
method based on Eqs. (12) and (13) requires about 11X 4 storage locations whereas
that based on Eqs. (19) and (20) still requires only 2x 4 storage locations. This is
the primary motivation for our insertion of the translational basis, Eq. (16). An
important consideration though is that, if the insertion step is more slowly

Large-scale quantum dynamics calculations 249

convergent than the original problem with respect to increasing M~, as appears
to be the case [26], then the second approach may require larger basis sets - and
hence more storage in the long run.

Now consider the A + B C case in Table 1, which applies to three arrangement
channels, with N~, M~, and N~ ~ again independent of c~. Notice that the E and
C matrices require 9N~M~,2 2 but the Z matrix requires only 6NLM~," 2 because
as seen in Eq. (13), it contributes to only six of the nine possible (c~', c~) blocks.
The table shows that for M~ >> 1, N~ >> 1, the storage requirement is dominated
by the C and Z matrices together with either the e vector or the E matrix, and
we will therefore concentrate on these terms in the rest of the discussion of storage.

First we continue our comparison of the storage requirements of the two methods
of generating the b vector and C matrix. As for nonreactive scattering, the direct
formulation of Eqs. (12) and (13) differs from the insertion formulation of Eqs.
(19) and (20) in that Eta, ~ replaces e~",(R~). However to save time by taking
advantage of the localized translational functions in forming the E matrix, we
must use Eqs. (22) and (23) just as for the nonreactive case discussed above.
This introduces the temporary C matrix which we store in the C matrix and this
results in a requirement of storing the Z matrix by itself, instead of storing it in
the C matrix as could otherwise be done. Therefore in practice the direct
formulation differs from the insertion formulation for localized translational
functions in that the E and Z matrices of total size 15M]N] replace the e vector
of size 5M~N]N~ 1~ while for delocalized translational functions the E matrix
of size 9M]N 2 replaces the e vector. As discussed above the storage tradeoff
depends on the relative sizes of N ~ and M~. For reactive scattering though,
the e vector is always delocalized so N~ ~ = N~ D >> Ms. Therefore the E matrix
formulation of Eqs. (19) and (20) may require an order of magnitude less storage
than the e vector method for a given M~. This, when combined with the extra
factor of 9 in Table 1 effectively precluded the use of the e vector formulation
for our large-scale reactive scattering problems.

Of course, in addition to the convergence problem mentioned above, the space-
saving nature of the E matrix formulation is paid for with the extra time required
to form the E matrix by performing the calculation in Eq. (21).

For a chemical reaction of the form A + B2, where B2 is homonuclear, symmetry
can be used to cut the storage space needed as compared to that for the general
A + BC chemical system as is shown in the last column of Table 1. The symmetry
relations between the two arrangement channels of the form B + AB are manifested
in the a, b, and e vectors and the E, C, and Z matrices. Because of this symmetry
only three (a, cV) blocks of the Z matrix need to be stored as compared to six
in the general case and only five (a, c~') blocks need be stored for the E matrix
instead of all nine as in the general case. Similar savings are possible for the e
vector, e.g. if all M~ are equal, we need store only two thirds of this vector. Due
to the structure of the algebraic Lippmann-Schwinger equation [Eq (7)], though,
the symmetry of the C matrix cannot be used to save space since the quantity

250 D.W. Schwenke et al.

needed is (1 - C) -1. In summary then the A + BC system with localized transla-
tional functions requires a C matrix of size 2 2 2 2 9N~M~, a Z matrix of size 6N~M~,
and an E matrix of size 9N]M] while the A + B2 system requires a C matrix of
size 9NZM2~, a Z matrix of size 3N]M2~ and an E matrix of size 5N]M].

Finally we note that when the algorithm is rearranged to cut the storage require-
ments, the possibilities for vectorization change. Since vectorization can change
the CPU time by an order of magnitude or more, this is a very significant
consideration. However it is beyond the scope of the present paper.

4. Conclusions and future work

1. The virtual-memory Cyber 205 can be used efficiently for quantal scattering
calculations by the R matrix propagation method. Turn-around time can be
enhanced by use of the Q5ADVISE subroutine call.

2. We have also performed large-scale quantal scattering calculations on large-
memory class-VII supercomputers by use of ~2 methods. The N 3 step in these
equations can be carried out by general vectorized linear algebra routines, but
further work is required to vectorize the N 2 steps and to find the best compromise
of memory storage, disk storage, and number of floating point operations for a
given computing environment and charging algorithm.

3. Further increases in the number of channels that can be treated efficiently is
possible using t ime-dependent quantum mechanics [29-33]. In such methods,
one solves a true initial value problem rather than a boundary value problem.
As a result one can solve for a single initial condition and there need be no steps
scaling as the cube of the number of channels. This cuts down the computation
time, increasing the size of the problem that can be tackled and hence also
increasing the storage demands. In addition results can be obtained over a broad
range of energies from a single calculation by using wave packets with a broad
energy spectrum. It will be very challenging to understand which approach,
t ime-dependent or ,~2 t ime-independent with optimized basis functions, can
provide the most efficient compromise of processor time and storage demand for
each category of large-scale dynamics problem on the new large-memory super-
computers.

Acknowledgments. The authors are grateful to Rob Peglar for assistance with the Cyber 205 jobs. This
work was supported in part by the National Science Foundation, the Minnesota Supercomputer
Institute, and the Control Data Corporation.

References

1. Schwenke DW, Truhlar DG (1985) In: Numrich RW (ed) Supercomputer applications. Plenum
Press, New York, p 295

2. Schwenke DW, Truhlar DG (1985) In: Cray Research Inc Science and Engineering Symposium.
Minneapolis

Large-scale quantum dynamics calculations 251

3. Schwenke DW, Truhlar DG (1986) Supercomputer simulations in chemistry. Springer, Berlin
Heidelberg New York Tokyo, p 165

4. Schwenke DW, Truhlar DG, Coltrin ME (1986) First Symposium on Computational Chemistry
on Cray Supercomputers, Minneapolis

5. Schwenke DW, Truhlar DG (1987) Theor Chim Acta 71:1
6. Schwenke DW, Truhlar DG (1987) J Comput Chem, in press
7. Schwenke DW, Truhlar DG, Coltrin ME (1987) J Chem Phys, in press
8. Schwenke DW, Truhlar DG (1987) Theor Chim Acta, 72:1-12
9. Schwenke DW, Truhlar DG, Kouri DJ (1987) J Chem Phys 86:1646

10. Haug K, Schwenke DW, Shima Y, Truhlar DG, Zhang JZH, Kouri DJ (1986) J Phys Chem
90:6757

11. Zhang JZH, Kouri DJ, Haug K, Schwenke DW, Shima Y, Truhlar DG (1987) J Chem Phys, in
press

12. Haug K, Schwenke DW, Truhlar DG, Zhang Y, Zhang JZH, Kouri DJ (1987) J Chem Phys,
87:1892

13. Zhang JZH, Zhang Y, Kouri DJ, Haug K, Schwenke DW, Truhlar DG (1987) Faraday Discuss
Chem Soc, 84, in press

14. Rabitz H (1972) J Chem Phys 57:1718
15. Zarur G, Rabitz H (1973) J Chem Phys 59:943
16. Pack RT (1974) J Chem Phys 60:633
17. McGuire P, Kouri DJ (1974) J Chem Phys 60:2488
18. Rabitz H (1975) J Chem Phys 63:5208
19. Light JC, Walker RB (1976) J Chem Phys 65:4272
20. Mullaney NA (1979) PhD thesis. University of Minnesota, Minneapolis
21. Truhlar DG, Harvey NM, Onda K, Brandt MA (1979) In: Thomas L (ed) Algorithms and

computer codes for atomic and molecular scattering theory, vol 1. National Resource for Computa-
tion in Chemistry, Lawrence Berkeley Laboratory, Berkeley, p 220

22. Bellman R, Kalaba R (1956) Proc Natl Acad Sci 42:629
23. Bellman R, Kalaba R, Wing GM (1960) J Math Phys 1:280
24. Bellman R, Kalaba R, Wing GM (1960) Proc Natl Acad Sci 46:1646
25. Secrest D (1979) In: Bernstein RB (ed) Atom-molecule collision theory. Plenum Press, New

York, p 265
26. Staszewska G, Truhlar DG (1987) J Chem Phys 86:2793
27. Schwenke DW, Haug K, Zhao M, Truhlar DG, Sun Y, Zhang JZH, Kouri D J, unpublished
28. Hamilton IP, Light JC (1986) J Chem Phys 84:306
29. Mowrey RC, Kouri DJ (1986) J Chem Phys 84:6466
30. Kouri DJ, Mowrey RC (1987) J Chem Phys 86:2087
31. Mowrey RC, Bowen HF, Kouri DJ (1987) J Chem Phys 86:2441
32. Sun Y, Mowrey RC, Kouri DJ (1987) J Chem Phys, 87:339
33. Mowrey RC, Sun Y, Kouri D J, Truhlar DG: work in progress

