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We discuss the computational strategies related to memory and disk storage 
and to data movement between memory and disk in large-scale quantum 
dynamics calculations. The discussion includes practical implementations of 
various strategies for handling large data sets on various supercomputer 
architectures. 
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1. Introduction 

We have recently initiated two research programs involving large-scale dynamics 
calculations based on time-independent quantum mechanics. The first program 
[1-8] is directed to inelastic collisions and has been carried out by converting 
the Schroedinger equation to coupled linear ordinary differential equations which 
are solved by an invariant-imbedding-type propagation method. (Propagation 
techniques similar to those employed in this study could also be applied to 
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reactive scattering [9], but we have not yet done so.) The second research program 
[ 10-13] is directed primarily to reactive collisions (although the techniques have 
also been applied to inelastic scattering [11] and should be quite competitive or 
even optimal for some inelastic scattering calculations). The second program 
involves converting the Schroedinger equation to coupled integral equations 
which are solved by basis-set expansion and linear algebraic techniques. The 
quantum mechanical theory for inelastic collisions [1, 3, 11] and reactive scatter- 
ing [9, 11, 13] and the results of applications [2-8, 10-13] are discussed in detail 
elsewhere. In this contribution to the proceedings of the International Conference 
on the Impact of Supercomputers on Chemistry, we center our attention on one 
specific aspect of the calculations, namely the questions of memory and disk 
usage, or - more broadly stated - the problem of storage management. Results 
presented at the Conference are described elsewhere [1-8, 10-13]. 

Section 2 provides a brief review of our algorithms. Section 3 presents the storage 
management strategies we have used, and Sect. 4 summarizes our conclusions. 

2. Algorithms 

2.1. Propagation method 

The Hamiltonian for vibrationally, rotationally inelastic collisions of two 
molecules may conveniently be written as 

h2 1 0 ( R 2 0 - ~ ) + H ~  , (1) 
H = 2tx R 2 OR 

where/x and R are the reduced mass and radial coordinate for relative transla- 
tional motion, H ~ consists of centrifugal terms and the internal Hamiltonians of 
the two colliders, and ~V is their interaction potential. We restrict the system to 
a single Born-Oppenheimer potential surface, and we expand the solution of the 
Schroedinger equation as 

no 1 N 
0 =-R 2 fn~(R, E )X , ( x )  (2) 

/1=1  

where n o denotes the initial state, f,-o is an unknown radial translational wave 
function, E is the total energy, {X,} is an orthogonal basis set, and x denotes 
the collection of angular translational coordinates and internal coordinates of 
the colliders. The different terms in Eq. (2) are called channels. Substituting Eq. 
(2) into the Schroedinger equation 

H0% = E0% , (3) 

-2[xR X ~ / h  , and integrating over x yields multiplying by 2 , 2 

d 2 

dRaf(  R, E) = D( R, E )f( R, E ), (4) 

where the elements of D(R, E) involve integrals over H ~ ~, and the basis 
functions. The development just given corresponds to the conventional close 
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coupling equations, but equations of the same form, with smaller order N for a 
given total angular momentum and set of vibrational-rotational states, are 
obtained in various more approximate formulations involving effective potentials 
[14, 15] or angular momentum decoupling [16-18]. 

There are N linearly independent vector solutions of (3) that are regula r at the 
origin, as required for the physical solutions. We obtain a full set of such regular 
solutions by simultaneously propagating information equivalent to N solutions 
from small R to large R, where we match to the n0-dependent boundary conditions 
to obtain the physical solutions. 

The propagation algorithm we use is the R matrix propagation method [19-21], 
which is an invariant-imbedding-type [22-25] algorithm. It involves dividing the 
R coordinate into a large number of sectors (typically 300-600) and recursively 
assembling the global R 4 matrix. The steps performed for sector i are to construct 
the D matrix at the sector midpoint, determine the eigenvectors T(i)  and eigen- 
values/t2(i) of D (which is real and symmetric and of order N, the number of 
channels), build the sector overlap matrix r ( i -  1, i) by 

, t ( i -  1, i) = T T ( i -  1) T(i) (5) 

and form its inverse, and propagate the global R4 matrix by 

R4(i) --- r4(i) - r3(i)[R4(i - 1) + rl(i)]-~r2(i), (6) 

where the r~(i) matrices are functions of -r( i-  1, i) and diagonal sector propa- 
gators that depend on k(i) .  The final quantities of physical interest can be easily 
constructed from R4 for the final sector. 

For the energy-independent potential used in the present study, the total energy 
occurs in (4) only as a multiple of the unit matrix in D, thus the eigenvectors T 
and the sector overlap matrices "t( i-  1, i) are independent of energy and can be 
re-used for calculations with the same potential and channel set but a different 
energy. Therefore for second and subsequent energies, only the steps associated 
with Eq. (6) have to be performed. 

As we have coded the R matrix propagation algorithm, it involves 3 matrix 
multiplications, 2 linear equation solutions, and 1 matrix diagonalization per 
sector for the first energy, and 2 matrix multiplications and 1 linear equation 
solution per sector for subsequent energies. All of these operations are on full 
matrices of order N. Our strategies for solving Eq. (4) have been developed for 
N on the order of 103. For many problems of interest, even higher values of N 
will be required for convergence. 

Further details may be found elsewhere [1, 3, 19, 20]. 

2.2. Algebraic method 

The second approach to molecular collision dynamics that will be discussed in 
the present paper is to convert the Schroedinger equation to coupled Lippmann- 
Schwinger integral equations for the amplitude density and to solve these by 
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expanding the amplitude density in a square integrable (5~ 2) basis set [11]. This 
method is applicable to both reactive scattering, for which several arrangements 
of  the particles are considered, and nonreactive inelastic collisions. As in Sect. 
2.1, we restrict the system to a single Born-Oppenheimer  potential surface. We 
will give the equations for reactive scattering and consider the single-arrangement 
inelastic problem as a special case. When the amplitude denisty is expanded in 
a basis and the coefficients of the basis functions are obtained by the method of 
moments [11, 26], the resulting algebraic Lippmann-Schwinger  equation can be 
written in matrix form as 

a = b + Ca ,  (7) 

where the b vector and C matrix have elements given by multidimensional 
integrals over readily obtained functions, and the elements of the a vector are 
the basis set expansion coefficients to be solved for. In particular, for reactive 
scattering, we write the reactive amplitude density for each arrangement a of  the 
particles (e.g. a = 1 for A + B C ,  2 for B + A C ,  and 3 for C + A B )  as 

t~ M 
~'~o%: ~ • a:o~cb~nm(R~,x~), (8) 

n ~ a  m ~ l  

where 

1 aP~n,~ - A~,"(R~)X:(x~), (9) 
Re 

a0 and no denote initial arrangement and channel, ff~=(1, t ~ + l , . . . ) ,  rT~= 
(N1, N~ + N2, �9 �9 �9 ), R~ and x~ are radial translational and angular-translational- 

(X~} n~ is an arrangement-dependent internal coordinates for arrangement a . . . . . .  ~ 
generalization of the basis of  Eq. (2), and {A ~"~M~ Jm=l is a nonorthogonal basis of 
~2 radial translational basis functions. Then we define/3 as a collection of the 
three indices 

/3 = (~, n, m). (10) 

We will consider the case in which all three arrangements a have the same 
number  of  basis functions so that N~ and M~ are independent of  a, and we 
define the product 

N= 3N~M~, (11) 

which is the order of a vector with index/3 or a matrix with indices /3 and/3 ' .  
With these definitions 

an f c,n (r) b.,= dR,~eo,(R~) f.(E,R,~) (12) 

and 

Ct3,e =(1-Sd~)Z~,~-~ f dR~e~9(R~) 

f dR'(r)f~(E, < (o ~ > ~- , R~) f,,(E, R~)A~ (R~), (13) x 
.) 
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where 

R~ < = min (R~, R'~) (14) 

R~ > = max (R, ,  R'~). (15) 

In these equations the functions (r)f~ and (of~ are energy-dependent solutions 
to zero-order problems as obtained in earlier steps, and e~ n and Z~,r are an 
energy-independent coupling vector (i.e. a vector of integrals over the coupling 
potential) and an energy-independent overlap matrix, respectively, also obtained 
in earlier steps. The integrals in Eqs. (12) and (13) are evaluated by numerical 
quadrature, and the total order of this quadrature in arrangement a will be called 
N~ ~ and will be assumed for discussion purposes to be independent of a. We 
will assume in the discussion that follows that h ~n is independent of n. 

An alternative form of the b vector and C matrix may be obtained by inserting 
the identity in Eqs. (12) and (13) in terms of the translational basis set {h ~n~M m JinX--l, 

i.e. 

M~ M~ 
1= 2 • laT>Am <a; 'l, (16) 

m = l  m ' = l  

where A ~ ,  is the inverse of the translational overlap matrix, i.e. 

a ~ = ((9~n) -1 (17) 

and 

e~.~,m = f dR~ A~,~,(R~)Ag(R~). (18) 

This is exact for a complete basis, but we use finite M~ which yields the 
approximations: 

b~9= 2 E~,r dR~A~,~,,(R~)(r)f~(E,R~) (19) 
rn"= 1 

and 

2/x M f C~,t~=(1-6. ,~)Zc,~-h-Z ~ El3,13,, dR~A~,,~,(R~) 
m"= 1 

f 'JR'(~r~(F R2)(of~(E, > ~ , • . . . . . . . .  ~, R~)Am (R~), (20) 

where we have defined Eta, ~ as a coupling matrix with elements 

E~,~= dR~e~f,(R~) E A~,'~'mA~,'~'(R~) �9 (21) 
m r'= 1 

Note that for computational purposes it may be useful to rewrite (21) as 

M 
El3, ~ = Y~ A,"~,,.C~,~,,, (22) 

m" 
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where we have first defined the integral 

Ct~, ~ = dR~ e~",(R~),~7,"(R~). (23) 

Further details may be found elsewhere [11]. The method just discussed is the 
method of moments for the amplitude density, but essentially all the discussion 
will apply equally well to two closely related methods - the Schwinger variational 
method and Newton's variational principle for the amplitude density [26, 27] 
with or without angular momentum decoupling approximations. 

3. Storage management strategies 

One condition which must be satisfied before a calculation can be carried out is 
that sufficient memory be available for the algorithm used. In the past, this was 
not usually a problem for scattering calculations. This was because, even though 
the available physical memory was small, the CPU power was not usually great 
enough to tackle problems exhausting this memory. The availability of class VI 
supercomputers, however, brought a new facet to the problem. These machines 
(the Cray-1 and X-MP machines and the Cyber 205) have the CPU power to 
treat much larger problems than before. At the same time, the amount of memory 
is not increased by an equivalent factor. For example, in 1980 the Chemistry 
Department at the University of Minnesota obtained a Digital Equipment Cor- 
poration VAX 11/780 equipped with scalar floating point accelerator and 4 
metabytes (equivalent to half a megaword of 64-bit word memory) of physical 
memory. In comparison, the University Computer Center had a Cray Research 
Inc. Cray-lb with 1 megaword of physical memory (a word is 64 bits on the 
Cray-lb).  Our estimates of  CPU times for H F +  HF scattering calculations show 
the Cray-lb to be up to about a factor of 400 times faster than the VAX, yet it 
has only twice the physical memory. Although 8-million word Cyber 205's 
appeared in 1985, and the introduction of the class-VII Cray-2 machine, with 
268 million 64-bit words, in 1986, ushered in a new era of large-memory machines, 
most supercomputing is still done with small memory machines, e.g. the Cray 
X-MP/48 has only two million words (equivalent to 16 megabytes) per processor. 
(An IBM Personal System/2 workstation may also be equipped with 16 megabytes 
per processor, and a Macintosh II may be equipped with 8.) 

When physical memory is insufficient for the problem at hand, we must use mass 
storage, usually magnetic disk or tape. These media often, but not always, have 
enough storage to handle the problems for which one can afford the CPU time; 
however, they have the drawback of being much slower than physical memory. 
The Solid-state Storage Device (SSD) "secondary memory",  available only on 
the Cray X-MP, is very large and much faster than conventional disk, but it is 
still slower than primary memory and has a large startup time before the fast 
aggregate transfer rate can be achieved. Thus it is possible for calculations using 
mass storage to spend more time waiting for data transfer to and from mass 
storage than time executing in the CPU. In quantal scattering calculations, most 
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of the CPU time is consumed in performing matrix operations which, for large 
enough N, where N is the order of  the matrix, scale as N 3. I f  the matrices 
involved are on mass storage, the time to retrieve them will scale with the order, 
as N 2, and for small or intermediate N, this time can dominate compared to the 
matrix operations. However, as N increases, eventually the N 3 term will dominate, 
and more time will be spent in the CPU than waiting for data transfer. This, of 
course, assumes that the data required for the matrix operation will fit into 
available physical memory. Otherwise an "out-of-core" algorithm must be 
employed, and this would bring a new dimension into the problem. Fur thermore  
although some operations, such as matrix multiply and linear equations solution, 
can be partit ioned efficiently so that only a partition of the matrix needs to be 
in memory at one time; others, such as eigenanalysis, are not as readily partitioned. 
Thus for larger problems, even if memory overflow is accommodated on mass 
storage, it is still important to have an efficient strategy for storing matrix elements 
in memory.  

For our calculations on small-memory (-<8 million 64-bit words) computers, we 
implemented the memory overflow to mass storage in two ways. On the Cray-lb,  
we explicitly move data via FORTRAN R E A D / W R I T E  statements (the Cray 
routines B U F F E R I N  and BUFFEROUT can also be used, and in fact are probably 
preferable, but they lack portability). Because of the 1-megaword memory limita- 
tion, our code for this machine was written to hold only two matrices in memory 
at any one time. This is sufficient for the matrix operations involved in the 
R-matrix propagation algorithm. In particular the eigenanalysis, which is carried 
out using the EISPACK routine RS for real symmetric matrices, and the real 
linear equation solution both require only 1 matrix in memory,  and matrix multiply 
requires 2 matrices. The matrix multiply is performed as a sequence of matrix- 
times-vector-gives-vector steps, with the result matrix overwriting the second 
matrix. On the 1 megaword Cray-lb,  this code could handle up to about N = 640 
(640 coupled channels). 

Our computational  strategy on the Cyber 205 took advantage of the virtual 
memory aspect of  the operating system. Here, as far as coding is concerned, ~he 
memory of the machine appears to be much larger than the physical memory 
available. At run time, the operating system automatically transfers data to and 
from memory  as it is needed. There are several trade-otis between using explicit 
FORTRAN data transfer and using the virtual memory. On the one hand, the 
virtual memory  is convenient, it automatically performs less data transfer if more 
memory is available or if a smaller problem is treated, and it uses efficient 
operating system input /output  procedures. On the other hand, if explicit and 
intelligent data transfer statements can be used to minimize the total amount of 
data movement  or organize it efficiently, they may decrease the amount  of  paging, 
make the code more transportable, and allow for sophisticated options like 
memory-resident files (codes with explicit data transfer are also readily adapted 
to utilize the SSD). 

An important consideration in running the R matrix propagation code is that 
the amount of  memory required in the course of a calculation can fluctuate 



244 D.W. Schwenke et al. 

greatly. Consider the various steps outlined in Sect. 2.1. The first is the construction 
of the D matrix, and the most time consuming part of this is computing matrix 
elements V~j of the interaction potential. In general we can write 

M 

V,, , (R)= E Bt~,t~,,,cvm,~,,,(R), (24) 
m = l  

where the B ~ ,  are independent of R, the C~%, depend on R, and fi and y denote 
subsets of the channel quantum numbers. For example in H F + H F  collisions, 
Bt~ ~,  is a 6-dimensional angular integral which depends on rotational quantum 
numbers and the angular momentum coupling and is expressible in terms of 3 - j ,  
6 - j ,  and 9 - j  symbols, and Cv~, is a 2-dimensional vibrational integral of 
component m of the interaction potential function. We have performed calcula- 
tions which require M up to 825. Even though the B m matrix is sparse (about 
5% nonzero for this case) and we store only the nonzero elements, a considerable 
amount of memory or disk is required to save these elements, in particular about 
40N 2 words. The remaining steps (diagonalization of D, building the s e c t o r  
overlaps, and propagation) in the R-matrix propagation algorithm for a single 
energy run have much more modest memory requirements, and in particular our 
code requires 7N  z words (we neglect all requirements proportional to only N in 
the present discussion). If the operating system assigns priorities to jobs by their 
memory requirements, as it does in our batch environment, it can be advantageous 
(e.g. to minimize wall clock time) to advise the system of the maximum memory 
requirements of the various steps of the calculation. 

In our calculations we found that the virtual memory of the Cyber 205 is indeed 
useful for extending the size of the system which can be treated. Virtual memory 
on the Cyber 205 is divided into units called pages. There are two different page 
sizes, small pages which are 16 blocks of 512 64-bit words per block, and large 
pages which are 128 blocks. The size of the small page is selected by the site and 
may be 1, 4, or 16 blocks. We grouped our data on large pages and the Cyber 
205 virtual memory manager, the pager, automatically moved pages in and out 
of memory as needed. However, if we did not advise the system of the changing 
memory requirements of different steps of our job, we found that the turn-around 
time for a large job (a job requiring -115  large pages) was much longer than 
the CPU time required. This occurred because a large job is run at a low priority 
so our jobs were forced to wait for large amounts of memory during busy 
production periods. 

Jobs are scheduled for the CPU by priority, provided that the job with the highest 
priority still waiting to be scheduled will fit into the available memory. For a 
typical one of our jobs ( N  = 824), the memory requirements would fluctuate, 
starting at about a small fraction of the machine memory ( - 2 3  large pages), 
climbing rapidly (to - 115  large pages) for some sections, and then backing down 
(to - 2 3  large pages) again. The result of this behavior is that the working set, 
which is used to estimate the job's memory requirement for CPU scheduling, 
grows at about the same rate as the actual memory requirement. However, the 
system uses a scaling factor when reducing the working set size, so that once the 
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working set is large it takes several evaluation periods to reduce it, even though 
the actual memory requirement is much less than the current working set. 

Our strategy for reducing the turn-around time on a busy system was twofold. 
First, we were able to use subroutine calls to a system program Q5ADVISE that 
allow the programmer  to tell the operating system when a page should be moved 
from memory to disk. We used this instruction to advise the system that certain 
arrays would not be needed for the up coming step in the calculation. Secondly, 
the scaling factor used by the system routine PAGER to reduce the job 's  working 
set was altered so pages that were advised out would result in a reduced working 
set in fewer evaluation periods. With a smaller working set, a low-priority job 
has a greater chance of being scheduled for the CPU. This strategy reduced the 
time needed to turn the job around by a factor of about three (without, however, 
significantly aliecting the CPU time needed to complete the calculation). It should 
be noted that if the job was alone in the system these changes would not be  
needed since they only affect the job's  ability to compete in a priority environment 
for memory. Decisions about working set evaluations and virtual memory manage- 
ment are complex. The change that was made to the system pager, though minor, 
is necessary to realize any benefits from this strategy, and it will affect all of  the 
jobs running in the system. 

To see more concretely how the memory resource demand changes and how the 
operating system can benefit from user intervention, we must consider in more 
detail the operation mode of the Cyber 205 computer. The system paging algorithm 
is based on a first-in, last-out criterion, so after the evaluation of the V matrix 
for a given sector via Eq. (24), physical memory will contain the V matrix and 
the last used parts of  the B m matrix. The B m matrix elements will not be required 
again until the other steps, Eqs. (5)-(6), are complete, however the system pager 
will keep them in memory until they are evicted by other memory demands. The 
next step, the formation of D and its diagonalization, requires an additional N 2 
words of memory beyond that for V. Also note that the diagonalization of D is 
an expensive step ( - 1 0  N 3 floating point operations), so it is very inefficient to 
let the operating system occupy a significant amount  of  physical memory which 
is not being used during this step. It is better to page out the B m matrix elements 
immediately after they have been used, and this is what we did with the 
Q5ADVISE subroutine calls. Another place where memory management  is helpful 
is the storage of the eigenvectors T(i) of the D matrix. After they are calculated 
in sector i, they are needed immediately in Eq. (5), but not again until Eq. (5) 
is evaluated for sector i + 1. Thus it is advantageous to page T(i)  out immediately 
after Eq. (5) is calculated. For large-scale calculations on a busy system, these 
considerations can be critical for good turnaround. 

Another possibility for decreasing the memory requirements is to rearrange the 
order of  computational  steps. An example of this possibility is provided by the 
approach we implemented for multiple-energy runs in the R matrix propagation 
algorithm. As mentioned at the end of Sect. 2.1, the matrices , r ( i -  1, i) and their 
inverses can be re-used for second and subsequent energies. In an early version 
of our code, we performed a complete calculation at one energy and saved these 
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matrices and their inverses on disk files for each of the 300 to 600 sectors. This 
storage becomes prohibitive for large-scale calculations, so in our Cyber 205 
production code we s a v e  11~ 4 for each energy instead of the sector overlap matrices. 
Thus we determine the R4 matrix for all energies at sector i before we calculate 
any quantities for sector i+  1. Since the number  of  energies we calculate is 
typically 3 to 7, it is much less than twice the number  of  sectors; thus this approach 
greatly reduces the storage requirements. Our code requires (6+ N E ) N  2 words 
of storage for the diagonalization, sector overlap, and propagation steps for a 
multi-energy calculation consisting of NE energies. 

Alternatively, one can simply recalculate some of the quantities when they are 
needed a second time rather than saving them. For example, in the R matrix 
propagation algorithm, for large enough N, the operation count per sector is 
64N3/3 for first energies and only 20N3/3 for second or subsequent energies; 
thus there is a considerable cost for not re-using the sector transformation matrices. 
For example, one can perform 3.2 second energy runs for the same cost as the 
first energy run. In the ~2 method employing Eqs. (12) and (13), the only 
quantities which can be re-used for subsequent energies are the overlap matrix 
and coupling vector. Depending on the problem, it may be possible to code the 
evaluation of the coupling vector in such an efficient manner that it is not 
prohibitive to recalculate it whenever necessary. This should usually be true for 
atom-plus-diatom collisions. Other quantities which might be considered as 
candidates for recalculation are the coefficients Bt~ ~ ,  in Eq. (24). We have found 
that in H F +  HF collisions, the calculation of these coeff• can be very time 
consuming, so that recalculation is not a viable alternative. The main reason for 
this is that our current algorithm for calculating vector coupling coefficients is 
not vectorizable. These comments point up clearly the fact that vectorization and 
memory strategies are far from independent. 

Many of the above considerations also apply to the new generation of large-real- 
memory supercomputers such as the Cray-2, which is currently configured with 
up to 268 megawords of memory.  In the case of  the Cray-2 and currently employed 
t ime-independent quantal scattering algorithms, the memory is probably sufficient 
for most scattering calculations which would be affordable in terms of CPU time 
with current budgets. However, there are instances where saving data on disk 
instead of memory could be useful. As usual, the primary motivation is economic. 
Depending on the installation and the charging algorithm, memory usage may 
cost more than mass storage and data transfers. Another aspect is rolling out of 
jobs. By rolling out, we refer to the process by which the operating system copies 
a calculation's physical memory to mass storage in order to use the memory for 
something else. This may occur frequently in a priority-based batch system or 
infrequently at ends of  availability periods or both. Most installations do not 
have enough mass storage, so a limit is placed on the memory size of  jobs which 
can be rolled out. By using mass storage where possible to decrease memory 
usage, a nonrollable calculation could be made rollable. This could mean faster 
turn-around time, because there is a limit on the number  of nonrollable jobs 
(they must all fit in memory simultaneously), as well as better restart ability in 
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case of system failures or failure to complete by the end of a computer availability 
period. Eventually it could be the determining factor on whether or not a 
calculation is doable. 

An important consideration for 5( 2 methods, such as the method reviewed in 
Sect. 2.2, is the size of the resulting vectors and matrices, and different approaches 
can significantly alter their sizes and therefore determine which systems can be 
studied. We will discuss this from the point of view of real memory computers 
such as the Cray-2, where we must be concerned with time-integrated memory 
usage and rolling strategy (rather than working sets and paging as on a virtual- 
memory architecture). We will consider as examples how the storage requirements 
change for using Eqs. (12) and (13) as compared to Eqs. (19) and (20), for 
inelastic as compared to reactive scattering, and for the use of localized vs 
delocalized translational basis functions. Since the coupling vector that appears 
in Eqs. (12) and (13) is independent of energy, an efficient strategy is to store it 
for re-use if the study involves several energies, as is usually the case. With this 
in mind, we will count the storage requirements for several cases. 

The storage requirements for the various arrays occurring in the ~ 2  method are 
summarized in Table 1. The nonreactive column refers to the case where only 
one arrangement is included, A + B C  refers to reactive scattering with no two 
atoms identical, and A +  B2 refers to reactive scattering with B identical to C and 
array elements identical by symmetry stored only once (as discussed below). 

First consider the nonreactive scattering case using Eqs. (12) and (13). For 
nonreactive scattering, the Z matrix is multiplied by zero and thus is not required, 
so we need arrays 1-5, 7, and 9 in Table 1. (Although this is not shown in Sect. 
2.2, the factor A~,",~ appearing in the definition of the E matrix is also used in 
forming the e vector, and therefore it is required when using Eqs. (12) and (13).) 
For nonreactive scattering the coupling vector has a particularly convenient form, 

Table 1. Array sizes for the ~ a  method 

Array Size" 

No. Name Nonreactive A +  BC b A + B2 b 

1 (r)f(E, R~) N~N~ e 3N~N~ e 3N~N~ R 
2 (')f(E, R~) N~N QR 3N~N~ e 3N~N~ R 
3 A~,,~, MEN~ 3M2N~ 3M2N,~ 
4 A~,~,(R~) M~N~NQ~ g 3M~N~N~ g 3M~N~N QR 
5 b~;' M~N] 9M=N 2 9M~N 2 
6 Z ~  . . . .  6MZN~ 3M~N~ 
7 Ct~tr M 2 N  2 9 M ~ N  2 9M~N~ 
8 C~, M~N~ 9M~N~ 9 M ~ N  2 
9 e~,(R~) M~N2N QR 9M~N2N QR 5M2N2NQR 

10 E~,  M ~ N  2 9 M 2 N  2 5 M 2 N  2 

a Assuming A72!(R~,) independent  of  n 
b Also assuming N,~, M~, and N ~  R independent  of  a 
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i . e . ,  

a. A,~,.,,,Am,,(R,~)e,~n,(R,.), (25) e ~ , ( R o ) = 2  ~~ on, 
m" 

where 

[ dx~ ~ c o ~o~,(R~) = X ~ ( x . ) V ~ ( R ~ , x . ) X . ( x ~ )  (26) 
t /  

and V c is the coupling potential. Substituting (26) into (12) yields 

Atom,, f dR~ Am,,(R,~)P~,(R~), (27) 
m" 

where 

P~', (R~) = e~,,(R~)f~(E, R~). (2S) 

I f  we use localized basis functions, e.g., distributed gaussians [28], the integrals 
in (27) can be done using a localized quadrature centered at the peak of A ~,,',(R,), 
such that N ~  R can be given a small value, say N ~  L, and each Y,,,(R,) needs to 
be stored at only N ~  L values of R~. To make the example even more concrete, 
consider the case where N~ ~ M,  ~ N ~  L ~ x, where x might be about 30-50. Then 
the storage requirement for arrays 1 and 2 is x 2 each, that for 3, 4, and 5 is x 3 
each, and that for arrays 7 and 9 is x 4 each and clearly dominates. Neither x 4 
array is symmetric. 

Now consider the case where we use Eqs. (19) and (20). Then we must store 
array 10 instead of 9. To take advantage of the localized translational functions 
in forming array 10, which is the E matrix, the summation over the overlap 
inverse and the integral that appears in Eq. (21) must be done in separate steps 
given by Eqs. (22) and (23) because the factor ~,~,~ A~,,~,mA ~,,',(R~) of  the integrand 
of (21) is delocalized even if A~ n is localized. This separation requires the use 
of a temporary matrix C to carry out the matrix multiply but since ~' has the 
same dimensions as C, we can use C itself as the temporary matrix. For the case 
just considered, both e~',(R~) and Er162 require X 4 storage locations. If, however, 
we used a variational method [26, 27] for which M~ ~0.3x, then Eqs. (12) and 
(13) require ~0.4x 4 storage locations, whereas Eqs. (19) and (20) would require 
only ~0 .2x  4. Notice however that the relative storage requirements for the two 
approaches do not depend on the number of  channels since all the big arrays 
scale as N 2. 

We now consider how these requirements would change if we used delocalized 
translational basis functions. In this case N~ R would have to be much larger, 
for examle 400-1000; we will use the symbol N~ D to denote a typical value of 
N~ OR for a delocalized basis. Let N~ OD ~ 10x for discussion purposes. Then the 
method based on Eqs. (12) and (13) requires about 11X 4 storage locations whereas 
that based on Eqs. (19) and (20) still requires only 2x 4 storage locations. This is 
the primary motivation for our insertion of the translational basis, Eq. (16). An 
important consideration though is that, if the insertion step is more slowly 
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convergent than the original problem with respect to increasing M~, as appears 
to be the case [26], then the second approach may require larger basis sets - and 
hence more storage in the long run. 

Now consider the A + B C  case in Table 1, which applies to three arrangement 
channels, with N~, M~, and N~ ~ again independent of  c~. Notice that the E and 
C matrices require 9N~M~,2 2 but the Z matrix requires only 6NLM~," 2 because 
as seen in Eq. (13), it contributes to only six of  the nine possible (c~', c~) blocks. 
The table shows that for M~ >> 1, N~ >> 1, the storage requirement is dominated 
by the C and Z matrices together with either the e vector or the E matrix, and 
we will therefore concentrate on these terms in the rest of  the discussion of storage. 

First we continue our comparison of the storage requirements of  the two methods 
of generating the b vector and C matrix. As for nonreactive scattering, the direct 
formulation of Eqs. (12) and (13) differs from the insertion formulation of Eqs. 
(19) and (20) in that Eta, ~ replaces e~",(R~). However  to save time by taking 
advantage of the localized translational functions in forming the E matrix, we 
must use Eqs. (22) and (23) just as for the nonreactive case discussed above. 
This introduces the temporary C matrix which we store in the C matrix and this 
results in a requirement of  storing the Z matrix by itself, instead of storing it in 
the C matrix as could otherwise be done. Therefore in practice the direct 
formulation differs from the insertion formulation for localized translational 
functions in that the E and Z matrices of  total size 15M]N] replace the e vector 
of size 5M~N]N~ 1~ while for delocalized translational functions the E matrix 
of size 9M]N 2 replaces the e vector. As discussed above the storage tradeoff 
depends on the relative sizes of N ~ and M~. For reactive scattering though, 
the e vector is always delocalized so N~ ~ = N~ D >> Ms. Therefore the E matrix 
formulation of Eqs. (19) and (20) may require an order of magnitude less storage 
than the e vector method for a given M~. This, when combined with the extra 
factor of  9 in Table 1 effectively precluded the use of the e vector formulation 
for our large-scale reactive scattering problems. 

Of course, in addition to the convergence problem mentioned above, the space- 
saving nature of  the E matrix formulation is paid for with the extra time required 
to form the E matrix by performing the calculation in Eq. (21). 

For a chemical reaction of the form A +  B2, where B2 is homonuclear,  symmetry 
can be used to cut the storage space needed as compared to that for the general 
A +  BC chemical system as is shown in the last column of Table 1. The symmetry 
relations between the two arrangement channels of  the form B + AB are manifested 
in the a, b, and e vectors and the E, C, and Z matrices. Because of this symmetry 
only three (a, cV) blocks of the Z matrix need to be stored as compared to six 
in the general case and only five (a, c~') blocks need be stored for the E matrix 
instead of all nine as in the general case. Similar savings are possible for the e 
vector, e.g. if all M~ are equal, we need store only two thirds of  this vector. Due 
to the structure of  the algebraic Lippmann-Schwinger  equation [Eq (7)], though, 
the symmetry of the C matrix cannot be used to save space since the quantity 
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needed is (1 - C) -1. In summary then the A +  BC system with localized transla- 
tional functions requires a C matrix of  size 2 2 2 2 9N~M~, a Z matrix of size 6N~M~, 
and an E matrix of  size 9N]M]  while the A +  B2 system requires a C matrix of 
size 9NZM2~, a Z matrix of size 3N]M2~ and an E matrix of size 5N]M].  

Finally we note that when the algorithm is rearranged to cut the storage require- 
ments, the possibilities for vectorization change. Since vectorization can change 
the CPU time by an order of  magnitude or more, this is a very significant 
consideration. However it is beyond the scope of the present paper. 

4. Conclusions and future work 

1. The virtual-memory Cyber 205 can be used efficiently for quantal scattering 
calculations by the R matrix propagation method. Turn-around time can be 
enhanced by use of  the Q5ADVISE subroutine call. 

2. We have also performed large-scale quantal scattering calculations on large- 
memory class-VII supercomputers by use of ~2 methods. The N 3 step in these 
equations can be carried out by general vectorized linear algebra routines, but 
further work is required to vectorize the N 2 steps and to find the best compromise 
of memory storage, disk storage, and number  of  floating point operations for a 
given computing environment and charging algorithm. 

3. Further increases in the number  of channels that can be treated efficiently is 
possible using t ime-dependent quantum mechanics [29-33]. In such methods, 
one solves a true initial value problem rather than a boundary value problem. 
As a result one can solve for a single initial condition and there need be no steps 
scaling as the cube of the number  of channels. This cuts down the computation 
time, increasing the size of  the problem that can be tackled and hence also 
increasing the storage demands. In addition results can be obtained over a broad 
range of energies from a single calculation by using wave packets with a broad 
energy spectrum. It will be very challenging to understand which approach,  
t ime-dependent or ,~2 t ime-independent with optimized basis functions, can 
provide the most efficient compromise of  processor time and storage demand for 
each category of large-scale dynamics problem on the new large-memory super- 
computers. 
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